Национальный исследовательский центр «Курчатовский институт»

Федеральное государственное унитарное предприятие «Центральный научно-исследовательский институт конструкционных материалов «Прометей» имени И.В. Горынина

Отдел подготовки научных кадров

УТВЕРЖДАЮ
Генеральный директор
НИЦ «Курчатовский институт» ЦНИИ КМ «Прометей»

А.С. Орыщенко

Введена в действие приказом генерального директора от « 30 » 12 2021 г. № 2/8

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА

по специальной дисциплине «Сварка, родственные процессы и технологии»

Научная специальность: 2.5.8 - Сварка, родственные процессы и технологии

Форма обучения - очная

Санкт – Петербург

2022 г.

Составители программы:

д.т.н., с.н.с. Леонов В.П., д.т.н.; доцент Ильин А.В.; д. т. н., с. н. с. Михайлов В. И.; д.т.н., доцент Шарапов М.Г.; к.т.н. Мельников П.В.; к.т.н. Галяткин С.Н., к.т.н. Тимофеев М.Н.

Программа одобрена на заседании научно-методической комиссии по сварке, родственным процессам и технологиям протокол №4-2021 от 20.12.2022г.

Председатель

д.т.н., с.н.с. В.П.Леонов

Согласовано:

Начальник отдела подготовки научных кадров

СОДЕРЖАНИЕ

- 1. Физические основы сваривания металлов.
- 2. Основные характеристики технологических процессов сварки,
- 3. наплавки, пайки и резки металлов.
- 4. Сварочные источники тепла. Сварочное оборудование.
- 5. Теория распространения тепла при сварке.
- 6. Особенности формирования металла шва и сварного соединения.
- 7. Основы металлургических процессов при сварке плавление.
- 8. Показатели свариваемости металлов.
- 9. Превращение в металле в процессе его охлаждения в твердом состоянии.
- 10. Механические свойства металла шва и сварных соединений.
- 11. Методы определения.
- 12. Коррозионные свойства металла шва и сварных соединений.
- 13. Основы теории сварочных деформаций и напряжений.
- 14. Контроль качества сварных соединений. Методы контроля. Способы устранения дефектов.
- 15. Термическая обработка сварных соединений.

1.ФИЗИЧЕСКИЕ ОСНОВЫ СВАРИВАНИЯ МЕТАЛЛОВ. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СВАРКИ, НАПЛАВКИ, ПАЙКИ, И РЕЗКИ МЕТАЛЛОВ.

- 1.1. Физические основы сваривания металлов. Определение процесса сварки. Классификация основных способов сварки, наплавки, пайки и резки металлов. Процессы, сопровождающие сварку при основных ее способах.
- 1.2. Особенности различных технологических процессов сварки, наплавки, пайки, резки металлов.

<u>Сварка</u> неплавящимся электродом в инертном газе без применения и с применением присадочной проволоки.

Ручная дуговая сварка электродами.

Автоматическая сварка под флюсом.

Сварка плавящимся электродом в смеси газов.

Импульсная сварка.

Электрошлаковая сварка.

Сварка электронным лучом.

Лазерная сварка.

Особенности сварки порошковой проволокой.

Плазменная сварка.

Контактная сварка.

Сварка токами высокой частоты.

Ультразвуковая сварка.

Сварка взрывом.

Сварка трением.

Пайка

Наплавка

Резка

2.СВАРОЧНЫЕ ИСТОЧНИКИ ТЕПЛА. СВАРОЧНОЕ ОБОРУДОВАНИЕ

2.1. Сварочные источники тепла.

Общие требования к сварочным источникам тепла.

Газосварочное пламя.

Сварочная дуга.

Электрошлаковый источник тепла.

Электронно-лучевые и лазерные источники тепла.

Нагрев электрическим током при наличии контактного сопротивления.

Сравнительные характеристики различных источников тепла для сварки плавлением.

- 2.2. Сварочное оборудование.
- 2.2.1. Источники сварочного тока.
- 2.2.2. Установки для механизированной дуговой сварки.

Полуавтоматы для сварки плавящимся электродом.

Автоматы для сварки плавящимся электродом.

Установки для сварки вольфрамовым электродом в инертных газах.

- 2.3. Оборудование для ручной и механизированной наплавки.
- 2.4. Установка для электронно-лучевой сварки.
- 2.5. Аппаратура для сварки лазерным лучом.

3. ТЕОРИЯ РАСПРОСТРАНЕНИЯ ТЕПЛА ПРИ СВАРКЕ

3.1. Нагревание и плавление электрода при электрической сварке. Перенос металла в дуге.

Характеристики крупнокапельного и мелкокапельного переноса.

Расчет проплавления основного металла.

3.2. Тепловое воздействие источников тепла на свариваемый металл.

Процессы нагрева и охлаждения свариваемого металла.

Процессы распространения тепла в период теплонасыщения и выравнивания температур.

Общие положения и основные тепловые расчеты с учетом условий сварки.

Основные расчетные схемы нагрева при сварке.

Термические расчеты применительно к тонким и толстым пластинам.

Температурные поля различных источников тепла.

Термические циклы при сварке (наплавке).

4. ОСОБЕННОСТИ ФОРМИРОВАНИЯ МЕТАЛЛА ШВА И СВАРНОГО СОЕДИНЕНИЯ

- 4.1. Сварочная ванна, кристаллизация и формирование металла шва при сварке.
- 4.2. Основные закономерности процессов кристаллизации.
- 4.3. Взаимодействие металла ванны с твердым металлом на границе сплавления.
- 4.4. Характерные зоны металла шва при одно- и многопроходной сварке.

5. ОСНОВЫ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ ПРИ СВАРКЕ ПЛАВЛЕНИЕМ

- 5.1. Общая схема взаимодействия металлической, газовой и шлаковой фаз присварке. Степень завершенности реакций взаимодействия в условиях сварки. Взаимодействие металла с азотом, водородом, кислородом и другими глазами. Раскисление. Легирование.
- 5.2. Металлургические процессы при сварке электродами. Металлургические процессы при автоматической сварке под флюсами.

Особенности металлургических процессов при эшс.

Особенности металлургических процессов при сварке в среде защитных газов.

5.3. Расчет состава металла шва.

Доли участия основного и присадочного металла в образовании сварочной ванны.

Коэффициенты перехода элементов в сварочной ванне.

- 6. ПОКАЗАТЕЛИ СВАРИВАЕМОСТИ МЕТАЛЛОВ. ПРЕВРАШЕНИЕ В МЕТАЛЛЕ В ПРОЦЕССЕ ЕГО ОХЛАЖДЕНИЯ В ТВЕРДОМ СОСТОЯНИИ.
- 6.1. Понятие свариваемости.
- 6.2. Показатели свариваемости.
- 6.2.1. Горячие трещины.

Природа и причины образования ГТ.

Способы и критерии оценки.

6.2.2. Холодные трещины.

Природа и причины образования XT. Влияние водорода и структуры. Способы и критерии оценки склонности к XT.

- 6.3. Превращение в металле в процессе его охлаждения в твердом состоянии.
- 6.3.1. Характеристика зон сварных соединений.
- 6.3.2. Способы регулирования структуры и свойства 3ТВ при сварочных процессах.

7. МЕХАНИЧЕСКИЕ СВОИСТВА МЕТАЛЛА ШВА И СВАРНЫХ СОЕДИНЕНИЯХ. МЕТОДЫ ОПРЕДЕЛЕНИЯ. ОСНОВНЫЕ МЕХАНИЗМЫ РАЗРУШЕНИЯ СВАРНЫХ СОЕДИНЕНИЙ.

7.1. Модуль нормальной упругости и коэффициент Пуассона.

Закон Гека.

Пластическая деформация.

7.2. Разрушение металлов.

Хрупкое и вязкое разрушение (основные механизмы).

Специфика влияния надреза на хрупких и вязких материалах.

Схема Иоффе.

Масштабный фактор.

Влияние температуры и скорости деформирования на разрушение металла.

7.3. Испытания на растяжение металла шва и сварного соединения.

Диаграмма растяжения.

Характеристики, определяемые при растяжении.

Машины для испытаний растяжением.

- 7.4. Испытания на статистический изгиб. Твердость металла. Определение твердости по Бриннелю, Роквелу, Виннерсу. Микротвердость.
- 7.5. <u>Динамические испытания.</u> Влияние надреза. Хрупкое и вязкое состояние. Влияние температуры испытания и скорости приложения нагрузки. Сериальные испытания на удар.

Определение критической температуры хрупкости.

Хладоломкость.

7.6. Испытания на усталость.

Испытания на знакопеременных напряжениях при чистом изгибе вращаюшегося образца и на консольных образцах.

Испытания растяжением и сжатием.

Малоцикловая усталость.

Кривые повреждаемости.

Связь предела усталости с характеристиками прочности.

7.7. Испытания на ползучесть и длительную прочность.

Предел ползучести и длительной прочности.

Влияние температуры испытаний.

Релаксация напряжения.

7.8. Характеристики трещиностойкости.

Основные понятия Кіс, Кід, Јс и методы определения.

8. КОРОЗИОННЫЕ СВОИСТВА МЕТАЛЛА ШВА И СВАРНЫХ СОЕДИНЕНИЙ

- 8.1. Межкристаллитная коррозия.
- 8.2. Общая коррозия.
- 8.3. Питтинговая и щелевая коррозия.
- 8.4. Коррозионное растрескивание.
- 8.5. Коррозионно-усталостная прочность.

9. ОСНОВНЫЕ ТЕОРИИ СВАРОЧНЫХ ДЕФОРМАЦИЙ И НАПРЯЖЕНИЙ

9.1. Деформация и напряжения при сварке.

Схема возникновения и развития сварочных деформаций и напряжений, их классификация, способы расчетного и экспериментального определения. Влияние теплофизических, механических свойств материалов и фазовых превращений на развитие и величину остаточных сварочных деформаций и напряжений (легированные стали, алюминиевые и титановые сплавы).

9.2. Особенности распределения напряжений и деформаций в сварных соединениях, выполненных однопроходными и многопроходными швами. Местные и общие сварочные деформации и способы борьбы с ними. Остаточные напряжения.

Влияние остаточных сварочных напряжений на работоспособность сварных соединений.

Остаточные напряжения в сварных соединениях разнородных сталей. Влияние термической обработки на сварочные напряжения.

10. КОНТРОЛЬ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИИ. МЕТОДЫ КОНТРОЛЯ. СПОСОБЫ УСТРАНЕНИЯ ДЕФЕКТОВ

10.1. Основные дефекты, возникающие при сварке.

- трещины;
- поры в сварных швах;
- неметаллические включения в швах;
- подрезы;
- несплавления.

10.2. Методы неразрушающего контроля:

- внешний осмотр;
- капиллярная дефектоскопия;
- магнитопорошковая дефектоскопия;
- ультразвуковая дефектоскопия;
- радиографический контроль;
- гелиевая плотность.

10.3. Методы разрушающего контроля:

- химический состав металла шва;
- механические свойства металла шва и сварного соединения (в т.ч. твердость);
- металлографический контроль;
- контроль ферритной фазы.
- 10.4. Основные способы устранения дефектов.

11. ТЕРМИЧЕСКАЯ ОБРАБОТКА СВАРНЫХ СОЕДИНЕНИИ

11.1. Классификация видов термической обработки.

Термодинамика фазовых превращений.

11.2. Выбор вида термической обработки сварных соединений различного класса сталей.

11.2.1. Отпуск.

Превращение при отпуске.

Выделение карбидов.

Распад аустенита.

Отпускная хрупкость I и II рода.

- 475⁰ - хрупкость.

11.2.2. Закалка.

Особенности мартенситного превращения.

Остаточный аустенит.

11.3. Старение после закалки.

Дисперсионное твердение.

11.4. Способы про ведения термической обработки.

Общая.

Местная.

Оборудование.

Методы контроля.

11.5. Диффузионные процессы при термической обработке сварных соединений.

Рекомендуемая литература

- 1. Туричин Г.А. Теоретические основы лазерной сварки металлов: учебное пособие-СПб.:Изд-во Политех. ун-та, 2015. Экз. 1
- 2. Лебедев В.А. Полуавтоматы для дуговой сварки и смежных технологий.- СПб.: Изд-во Политех. ун-та, 2013. Экз.1
- 3. Алферов В.И. Методы расчета сварочных деформаций и напряжений судовых корпусных конструкций: Монография.- СПб.: ФГУП «Крыловский государственный научный центр», 2014. Экз.1
- 4. Кархин В.А. Тепловые процессы при сварке.-2-е изд.,перераб. и доп.-СПб.: Изд-во Политех. ун-та, 2015. Экз.1
- 5. Левченко А.М. Книга лекций по сварке в Политехническом университете Петра Великого.- СПб.: Изд-во Политех. ун-та, 2015. Экз.
- 6. Барышников А.П. Сварка корпусных сталей для судостроения и морской техники.-СПб.: Изд-во Политех.ун-та, 2016. Экз.5

Дополнительная литература

- 1. АКУЛОВ А.П.• БЕЛЬЧУК Г.А., ДЕМЯНЦЕВИЧ В.П. "Технология и оборудование сварки плавлением", 1977г.
- 2. ВАЙНЕРМАН А.Е., ШОРШОРОВ М.Х. и др. "Плазменная наплавка металлов", Машиностроение М.-Л, 1969г.
- 3. ЗЕМЗИН В. Н. "Сварные соединения разнородных сталей", М. –Л. Машиностроение, 1966г.
- 4. ЕРОХИН А. А. "Основы сварки плавлением" 1973г.
- 5. КАРЗОВ Г. П., ЛЕОНОВ В. П., ТИМОФЕЕВ Б.Т. Сварные сосуды высокого давления: прочность и долговечность", Машиностроение, 1982г.
- 6. КУДРЯВЦЕВ И. В., НАУМЧЕНКОВ И. Е. «Усталость конструкций сварных", 1975г.
- 7. КУЗЬМИНОВ С. А. "Сварочные деформации судовых конструкций", 1974г.
- 8. ЛАШКО Н.Ф., ВРУБЛЕВСКИЙ "Пайка металлов", Машгиз, 1996г.

Электронная библиотека, другой информационный ресурс 1. Научная электронная библиотека «eLibrary

Журналы:

Автоматическая сварка

Атомная техника за рубежом

Атомная энергия

Вопросы материаловедения

Реферативный журнал Сварка

Сварка и диагностика

Сварочное производство